Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Anesth Pain Med ; 12(3): e123350, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2258753

ABSTRACT

Background: The SARS-CoV-2 pandemic is one of the most significant challenges for healthcare providers, particularly in the critical care setting. The timing of intubation in COVID-19 patients seems to be challenging. Therefore, we aimed to investigate how it may have a survival benefit, and we determined which clinical characteristics were associated with outcomes. Methods: This cross-sectional study was conducted in the Imam Khomeini Hospital Complex. We randomly selected patients admitted to intensive care units and, based on intubation status, categorized them into three subgroups (early, late, and not intubated). Early intubation is defined as intubation within 48 hours of ICU admission, and late intubation is defined as intubation after 48 hours of ICU admission. Results: Early-intubated patients were more likely to have dyspnea than late-intubated patients, and late-intubated patients had a higher mean heart rate than early-intubated patients. The neutrophil/lymphocyte ratio was significantly (P < 0.05) lower in not-intubated patients than in other patients. There was no difference in NLR between early- and late-intubated patients. Mean serum creatine phosphokinase and troponin I levels were higher in late-intubated patients than in early- and not-intubated patients. Early-intubated patients had a lower ROX index than late-intubated patients. Patients with higher scores of APACHE 2, respiratory rates, and neutrophil to lymphocyte ratio were more likely to be intubated. Increasing APACHE and SOFA scores were associated with decreased odds of survival. Conclusions: There were no statistically significant differences in total mortality between early- and late-intubated patients. APACHE 2 scores, NLR, RR, and history of ischemic heart disease are some of the appropriate predictors of intubation. Higher respiratory rates (tachypnea) can be an indicator of early intubation. The ROX index is one of the most sensitive and capable tools for predicting intubation. Intubation status is a potent predictor of in-hospital mortality.

2.
Stem Cell Res Ther ; 13(1): 365, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-2021331

ABSTRACT

BACKGROUND: High morbidity and mortality rates of the COVID-19 pandemic have made it a global health priority. Acute respiratory distress syndrome (ARDS) is one of the most important causes of death in COVID-19 patients. Mesenchymal stem cells have been the subject of many clinical trials for the treatment of ARDS because of their immunomodulatory, anti-inflammatory, and regenerative potentials. The aim of this phase I clinical trial was the safety assessment of allogeneic placenta-derived mesenchymal stem cells (PL-MSCs) intravenous injection in patients with ARDS induced by COVID-19. METHODS: We enrolled 20 patients suffering from ARDS caused by COVID-19 who had been admitted to the intensive care unit. PL-MSCs were isolated and propagated using a xeno-free/GMP compliant protocol. Each patient in the treatment group (N = 10) received standard treatment and a single dose of 1 × 106 cells/kg PL-MSCs intravenously. The control groups (N = 10) only received the standard treatment. Clinical signs and laboratory tests were evaluated in all participants at the baseline and during 28 days follow-ups. RESULTS: No adverse events were observed in the PL-MSC group. Mean length of hospitalization, serum oxygen saturation, and other clinical and laboratory parameters were not significantly different in the two groups (p > 0.05). CONCLUSION: Our results demonstrated that intravenous administration of PL-MSCs in patients with COVID-19 related ARDS is safe and feasible. Further studies whit higher cell doses and repeated injections are needed to evaluate the efficacy of this treatment modality. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (IRCT); IRCT20200621047859N4. Registered 1 March 2021, https://en.irct.ir/trial/52947 .


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Iran , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Pandemics , Respiratory Distress Syndrome/therapy , SARS-CoV-2
3.
Stem Cell Research & Therapy ; 13(1):1-12, 2022.
Article in English | BioMed Central | ID: covidwho-1957738

ABSTRACT

High morbidity and mortality rates of the COVID-19 pandemic have made it a global health priority. Acute respiratory distress syndrome (ARDS) is one of the most important causes of death in COVID-19 patients. Mesenchymal stem cells have been the subject of many clinical trials for the treatment of ARDS because of their immunomodulatory, anti-inflammatory, and regenerative potentials. The aim of this phase I clinical trial was the safety assessment of allogeneic placenta-derived mesenchymal stem cells (PL-MSCs) intravenous injection in patients with ARDS induced by COVID-19. We enrolled 20 patients suffering from ARDS caused by COVID-19 who had been admitted to the intensive care unit. PL-MSCs were isolated and propagated using a xeno-free/GMP compliant protocol. Each patient in the treatment group (N = 10) received standard treatment and a single dose of 1 × 106 cells/kg PL-MSCs intravenously. The control groups (N = 10) only received the standard treatment. Clinical signs and laboratory tests were evaluated in all participants at the baseline and during 28 days follow-ups. No adverse events were observed in the PL-MSC group. Mean length of hospitalization, serum oxygen saturation, and other clinical and laboratory parameters were not significantly different in the two groups (p > 0.05). Our results demonstrated that intravenous administration of PL-MSCs in patients with COVID-19 related ARDS is safe and feasible. Further studies whit higher cell doses and repeated injections are needed to evaluate the efficacy of this treatment modality. Trial registration: Iranian Registry of Clinical Trials (IRCT);IRCT20200621047859N4. Registered 1 March 2021, https://en.irct.ir/trial/52947 .

4.
Stem Cell Res Ther ; 13(1): 96, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1731542

ABSTRACT

BACKGROUND: Cell-free Mesenchymal stromal cells (MSCs) have been considered due to their capacity to modulate the immune system and suppress cytokine storms caused by SARS-CoV-2. This prospective randomized double-blind placebo-controlled clinical trial aimed to assess the safety and efficacy of secretome derived from allogeneic menstrual blood stromal cells (MenSCs) as a treatment in patients with severe COVID-19. METHODS: Patients with severe COVID-19 were randomized (1:1) to either MenSC-derived secretome treatment or the control group. Subjects received five intravenous infusions of 5 mL secretome or the same volume of placebo for five days and were monitored for safety and efficacy for 28 days after treatment. Adverse events, laboratory parameters, duration of hospitalization, clinical symptom improvement, dynamic of O2 saturation, lymphocyte number, and serial chest imaging were analyzed. RESULTS: All safety endpoints were observed without adverse events after 72 h of secretome injection. Within 28 days after enrollment, 7 patients (50%) were intubated in the treated group versus 12 patients (80%) in the control group. Overall, 64% of patients had improved oxygen levels within 5 days of starting treatment (P < 0.0001) and there was a survival rate of 57% in the treatment group compared to 28% in the control group was (P < 0.0001). Laboratory values revealed that significant acute phase reactants declined, with mean C-reactive protein, ferritin, and D-dimer reduction of 77% (P < 0.001), 43% (P < 0.001), and 42% (P < 0.05), respectively. Significant improvement in lymphopenia was associated with an increase in mean CD4+ and CD8+ lymphocyte counts of 20% (P = 0.06) and 15% (P < 0.05), respectively. Following treatment, percentage of pulmonary involvement showed a significant improvement in the secretome group (P < 0.0001). This improvement differed significantly between survivors and those who were dying (P < 0.005). CONCLUSIONS: For the first time, this study demonstrated that in hospitalized patients with severe COVID-19, therapy with MenSCs-derived secretome leads to reversal of hypoxia, immune reconstitution, and downregulation of cytokine storm, with no adverse effects attributable to the treatment. Given these outcomes, it may be possible to use this type of treatment for serious inflammatory lung disease with a mechanism similar to COVID-19 in the future. However, it is necessary to evaluate the safety and efficacy of MenSCs-derived secretome therapy in clinical trials on a larger population of patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05019287. Registered 24AGUEST 2021, retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05019287 . IRCT, IRCT20180619040147N6. Registered 04/01/2021.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Double-Blind Method , Humans , Prospective Studies , SARS-CoV-2 , Secretome , Treatment Outcome
5.
Eur J Med Res ; 27(1): 18, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1701526

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, different treatments have been used in critically ill patients. Using intravenous immunoglobulin (IVIG) has been suggested in various studies as an effective option. Our study aims to access the efficacy of IVIG in critically ill COVID-19 patients. METHODS: In this retrospective matched cohort study, records of three tertiary centers with a large number of COVID-19 admissions were evaluated and used. Based on treatment options, patients were divided into two groups, standard COVID-19 treatment (109 patients) and IVIG treatment (74 patients) patients. Also, the effect of IVIG in different dosages was evaluated. Patients with IVIG treatment were divided into three groups of low (0.25 gr/kg), medium (0.5 gr/kg), and high (1 gr/kg) dose. Data analysis was performed using an independent t test and one-way analysis of variance (ANOVA) to compare the outcomes between two groups, including duration of hospitalization, intensive care unit (ICU) length of stay, and mortality rate. RESULTS: The duration of hospitalization in the IVIG group was significantly longer than standard treatment (13.74 days vs. 11.10 days, p < 0.05). There was no significant difference between the two groups in ICU length of stay, the number of intubated patients, and duration of mechanical ventilation (p > 0.05). Also, initial outcomes in IVIG subgroups were compared separately with the standard treatment group. The results indicated that only the duration of hospitalization in the IVIG subgroup with medium dose is significantly longer than the standard treatment group (p < 0.01). CONCLUSION: Our data indicate that the use of IVIG in critically ill COVID-19 patients could not be beneficial, based on no remarkable differences in duration of hospitalization, ICU length of stay, duration of mechanical ventilation, and even mortality rate.


Subject(s)
COVID-19 Drug Treatment , Critical Illness , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2/drug effects , Aged , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Immunologic Factors/therapeutic use , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Pandemics/prevention & control , Respiration, Artificial , Retrospective Studies , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL